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SIMPLY SUPPORTED RECTANGULAR FLAT PMTES

By S. B. Batdmf and Manuel Stein

The buckling of a simply supported-rectangular flat pla’te
under combinations of shear and direct stress was investigated by
means of an ener~ method. The critical cmbinatkms of stress for
several length-width ratios were determined to an accuracy of about
1 percent by the use of tenth-order determinants in conjunction witi
a modified matrix iteration method. Curves were drawn which can be
used to obtain the critical stress combinatims for the case of
interaction of shear and longitudinal.direct stress end for the case
of interaction of shear md transverse direct stress.

The nro%lem of buckling of pletes uhder the action of more than
one stress has been given considerable attentim. For plates
subjected to two stresses the critical combinations are usually giv=
%y means of titeraction curves, that is, curves that can be used to
obtain the value of one stress required to produce buckling when a
given value of another stress is also present. The stresses &e
ordinarily gimn nondimensionally jn tmms of either stress ratd0s
or stress coefficients.

In reference 1 the intmactlon curve for infinitely l~g flat
plates under ccmbined shear and longitudin= direct stress was
shown to be very nearly a parabola as indicated in figure 1 of the
present qaper. ‘a this figure R8 is ‘theratio of shear stress

mresent to the critical stress in pure shear and Rx Is the ratio

of the longitudinal direc,tstress present to the critical stress
in pure longitudinal compression. (All s~bols are defined in
appendix A“.) This curve is shown in figure 1 of reference 1 to
amuly to plates having edges either simply su~orted, clamped, or
elastically restrained agalnsf.rotation. Reference 2 demonstrates

-—
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that the uarabola also applim, to a high degree of accuracy, to
nearly square plates with simply supported edges. On the other
hand, for infinitely long plates loaded in shear and transverse
direct stress, the interaction curve assumes a different form,

..

which is shown for stiply supported edges in figure 2 taken from
figure 3, reference 3. The form of the interaction curve for shear
end transverse direct stress appears, therefore, to change markedly
as the length-width ratio of the “Tlateincreases from 1 to m.
The purpose of the present payer is to investigate this transition
and, In addition, to determtie whether any appreciable change In
the form of the titeracthn curve for shear and longitudinal stress
occurs as the length-width ratio of the plate increases frcm 1
to c=.

RESULTS AND DISCUSSION

The results discussed herein are lmsed on the theoretical
solution -presentedin appendix B. The numerical results, computed
%y means of the matrix iteration method described in appendix C,
are lelieved to be accurate to within shout 1 -percent. ~teractiun
curves are yressnted for the buckling of simply supported plates
having length-width ratios in the range of 1 to 4 and subjected to

d

shear and longitudinal stress and to shear and transferee stress.
r’

Sheer and Longitudinal Stress —

The interaction curves for shear end longitudinal direct stress
are shorn iiifigure 3 h terms of stress ratios for simply supported
flat rectangular ~lates having length-width ratios of 1, 2, and 4.
One of the two curves given for each length-width ratio represents
a buckle pattern that is symmetric about the centar yoint of the
plate. The other curve represents a buckle pattern that is enti-
symmetri.cabout the center petit of the plate. Those parts of the
two curves that are governing parts (the yerts that give lower
values of one stress for a given vslue of the other stress) are
drawn with solid lties. The purpose of presenting two curves
instead of only the governing -partsof either curve is to indicati
where the cusps occur end to show the abrupt ohange from a symmetric
to an entisymnetric buckle pattern that results in these cusps.

—

—

—

For purposes of comyaristi, points from the perabola represented
by tho following equation for the interaction curve for a length-

*

width ratio of co

Ra2 + Rx = 1 (see refermce 1)
s
.-
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are included in each graph in figure 3. The curves for the
rectangular plates do uot .iilftervisibly from the parabola; this
close agreement indicates that for shear and.lcmgltudlnal direct
stress of simply supported rectangular plates the parabolic
interaction formuk is substantially correct.

Shear and Transverse Stress

The interaction curves in stress-ratio form for shear and
tmnsverse direct stress for simply supported rectangular plates
havWg 16ngth-width ratios of 2, 3, and k are shown in figure”k.
The curve for a Iength-wid_thratio of 2 is nearly a parabQle!in
Me compression range but -deviatesconsiderably fran the parabola
in the tension renge. The cbves for tie higher length-widtl...
ratios &eviate ccmsiderably frm a pm”ab.olah both compression and
tension and ticline toward the curve for infinitely bug plates.
In figure ~ the curves of figure 4, together with curves for plates
of length-width ratios of 1 and ~, are @otted on the mme
graph. The vertical s~.raight-linepart of the interaction curve
f’ora length-width ratio of m corresponds @-,bucHin.g of the
@ate as an Euler strip. (S9e reference 3.) :

~ figure 6 the transitim in the form of tie interactim “
curve as the length-width ratio of the plate changes from ltom
is shown in terms of buckling stress coefficients, The assumption
that a long plate is infinitely long is sem to lead to a conservative
estimate of the buckling stresses; if the len~th-width ratio is
greater tian 4, mly a &nall erro; is involve~ h

Tilecombinations of stress coefficients that
and the correspondtig deflection coefficients are

CCNCLUSICNS

this assmnption.

result in buclding
given in table 1.

.—

.

.

The results for the critical.combinations of direct stress and
shear of simply supported rectangular flat plategj computed 3Y an
energy method summarized in tables and graphs, show that:

1. For shear &d longitudinal direct smess the fiteraction
curve for all length-widti ratios investiga~d is substantially a
~abol.a for which the equation b terms of stress ratios is

R’ +R.1
s x

——
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where R~ Is the ratio of shear stress present to the critical stress
●

in pure shear and Rx is the ratio of longitudinal direct stress

present to the critical stress in pure longitudinal compression.

2. For shear and &snsverse direct stress, the shage of the
interaction curve depends on the length-tidth ratio of the plate.

-.

For square plates the in+eractimn curve.is very nearly”a parabola,
—— —.

the equation for which is given in the yyg_cedtigparagraph. The ., ~
lnteractinn curve for Dlates having a le%th-width ratio of 2 is
nearly Darabolic in the compression rangebut is close to the lumvn
intaraetion curve for infinitely long plates in the tension range.
In the renge of’length-vidth ratio from 2 to 4 the parabolic equation
does not hold even in compression; therefore the curves given ti

=.

the present paner should be med. At length-width ratios greater
th~ 4, me titeraction cue ap~roxtiatee the interaction curve for

.-

a length-width ratio of w .
.

.,.

Langley Memorial Aeronautical Laboratory
National Advisory Ccmmittee for Aeronautics

Langley Field, Vs., November 8, ).946<.
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AFWENDIX A

a

b

t

w

II

x

Y

B

E

%ln

bm

Lm

%

i,j,rnjn,p, q,~

c~

ux

%

T

Rx

Ry

SYMEQIS

length of plate .,

width of plate; b < a

thickness of plate

deflection normal to @ate

flexural stiffness of plate

(12(:3J

longitudinal coordinate

transverse coordinate

symmetrical matiix

Ycmg’s modulus for materiel

deflection-function coefficient

element of matrix

diagonal terms h

B

stability determinant

mth unknown in set xl>~>”’”~

integers

arbitrary coefficient

longitudinal ccmqressive stiess

transverse compressive stress

shear stress

longitudinal direct-stress ratio

transverse direct-stress ratio

.—

“,-
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R~ shear-stress ratio

kx longitudinal ccmqmessive-stiese coefficient

k transverse compres.sive-stiesscoefficient
Y

k8 shear-stress coefficient

P length-width ratio (a/b)

P Poisson’s ratio for material

k characteristic value of matrix B.

‘i
Ith characteristic vslue of matrix. B

E column matrix witi elements xlj~ja~~~

‘3i modal column associated with ith characteristic value

●

✌

—

—

--—

_ (n)

3 column matrix ccmsticted so that each element is the mean of

the corresponding elements of ~(n) and $n”’)

cr critical (used as subscript)

---

.

.
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Method of Analysis,’

The problem of the stability of finite rectangular flat plates
under combined shear end direct stress is solved by use of the
Rayleigh-Ritz method. (SEH3reference 4.) The doflection function
is exqmessed exactly hy means of a two-dimensional infini+te
Fourier series..The application of the,Rayleigh-Ritzaethod results
ti an infinite set of h~geneous linear equations in the infinite
nullbeiof unlmown Fourier coefficients. Solutions of these,equations
that give F,ouriercoefficients not all equal to zero exist only for
those “combinationsof shear and direct stress for which the buckled
plate is in neutral equilibrium.

The algebraic equations obtained herein are equivalent to
the equations used in reference 2. In order to obtain accw”ate
results for relatively long plates, however, a method of solution
of these equdticms diffewnt from the method of reference 2 was
employed @ the present Taper. In reference 2, two sixth-order
determinants (one determinant corresponding to a symmetrical and
the other determinant to an antisymnetrical.buckle patt@n) were
expanded and the res@.ting polynunials were Solved for the critical
8&ss combinations. Each solution involve~ the use of only
six terms in the Fourier expansim of the tiflectitm function. b
the present paper 10 terms were used in the expansion of the deflection
function. The corresponding set of 10 simultaneous equations was
solved by the matrix integrationmethod (references 4 and 5) modified
in the manner described in ammendix C. TMs method has the advantages..-
that, whereas a very accurate solution requires a great deal of
labor, a good approximate solution can be obtained without much
effort, and the Fourier coefficients as well as the buckling loads
can be evaluated. A lmowledgk of the Fourier coefficients for a
given loading condition is used to determ5n4 whether tinebest
choice of equations was made and also to assist in the choice of
10 most important equations for a similar loading condition.

Accuracy of Results
‘.

.,

the

Difficultly is usually encountered in evaluating the discrepancy
between the buckl.~ load determinedly an exact solution of the 10
most important equations end the true value of the buc~ing load,
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On the assumption that the use of the 10 most important stiultaneous
equations of the Wlntte set to find the critical shear stress for
a given compression stress would in all cases result in an error of
not more than a few tenths of 1 percent, the iteration (see appendix C)
was carried out until the error in the solution of the equations used
was estimated to be less then 0.5 percent. The shear-stress
coefficients presented in table 1 of the present paper therefore
are believed to be h error by not more than 1 percent,

~“

that

Solution

The critical stresses are determined cm the basis of the principle
during buckling the elastic-strain ener= stored in a structure —

is equal to the work done by the applied loads, For the case of a
rectangular flat plate under loads applied in the plane of the plate,
this equality becomes, when the coordinate system is that of figure 7t

(equivalent to equation 21o, reference 6)

.

Equation (Bl) can be rewritten in terms of nondimensional stress

-.

coefficients as follows:

b

—

—

.

,
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where

The -procedure
for w a function

9

,.
.. . .

b2tkv=a —
. y ~2D

used in solving equation (~2) involves substituting
& x and. Y that satisfies the edge conditions

and can be ad@sted. so as to closely approximate the bucKi.ing con-
figuration. For any case in which the value of v is O at all tie
edges, the te~ titi the coefficient -2(1 - V) cen be shown.to

vanish (reference 7) * A series of terms with arbitrery coefficients
is used to represent w, and the coefficiente are determined by
the Rayleigh-Ritz method. A general form for the deflectim w’ is

w=

Equation (B2] is
transverse stress and
longitudind. stress.

solved for the case of buckling under shear and
for the case of buckling under shear and

Shear and transverse direct stres=.- If the value of kx i.s

set equal to O and the e~ression for w is Substituted in
equation (IQ), the following equation is obtained:

.



10 NACA’TN No, 1223
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m T’{~%)’‘ (Y)q’-%4-)’(%)j~ga2

m=l n=l

.

(B4)

where m i p endntq are odd numbers. —

The coefficient am must be chosen to meke tie value of k~

a minimum. This procedure results in the set of homogeneous
linear equations represented by

.
●

�✎
�

(B5)

where

m= 1,2, 3,**.

n= 1,2, 3,..,

andmfp Snd nt q are od”dnumbers. .-—

This set of equations may be divided into two groups which are
lnclependentof each other, one group in which rni n “is odd
(antisymmetricbuckling), and one grouy in which m + n is even
(symmetricbucklin~). Ten equations in 10 unknowcm were solved for
each group by the i~~ration method explained in appendix C. ,.

.
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A representative determinant in terms of’ the coefficients for
the group of equations in which m * n is even is

where

.
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coefficients for the
group of equatione in which m t n is odd it3
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m=l, n=2

m.2, n=l

m=l, n=4

l?&2,.11=3

m=3, n=2

m=h, n=l

m-+, n=5

m=3, n=4

m=4, n=3

m=5, n=2

t

-J.& !!!2
225 21
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84----
77

’41 0

0 %5

16 8.— ..-
35”3

(B7)

00 144
-Ty-

Q.kc lo”
27 441

’43

“8.-
3

In general, the method is to choose numerical values of ~
and k

Y’
eet each determinant equal to 0, anflsolve for the lowest

value of ks. The lower of the two values of k~ found from the..
two determinants estdlishes the m?itical shear stress for a panel
with Iength-width ratio ~ under the transverse stress given by .

%

-

—
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~ear and hnffitudina~ direct stress,- H
%

is set equal .
to O in equation (132)and the ea.ueprocedure as the procedure
for the combination of ehear and transverse stress is carried out, “
the set of homogeneous linear equaticms givenby the Rayleigh-Ritz
method is represented by

vhere

m= 1, 2, 3,...

n= 1,2, 3,...

andm~p sndm~q are odd numters.

lmlpq
(m2 . ~2)(n2 - /) ‘0

(B8)

The determinant set up from these equations are the same as the
de’tirminants(B6) and (B7) for symmetric and antisymmetric bucld.ing,
respectively, except that the diagonal terms are

In general, the method is to choose numerical values of B
and kx, set each determinant equal to O, and solve for the

lowest value of k~. As in,the determination of the shear and

transverse direct stress, the lowest value of ks establishes the

critical shear stress for a panel wi~ length-width ratio ~ under
the longitudinal stress given by ~.

.. .. . . ,, ..

. .
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MATRIX ITERATION
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mom

.

If the matrix iteratisn method is used In attempting to solve
the set of simultaneous linear algebraic equations associated with

—

the buckling of flat plates where shear is present, the conventional
iteration process as described.in reference 4 does not converge.
The reason for this nonconvergence, the moufication in the iteration
process used in the present paper to ob’tiinconvergence, and the
method of choosing the best finite set of algebraic equations to use
are described in the following paragraphs.

-—
.-

Conventional Iteration I?rocess

The matrix iteration
in terms of the.following

where

m= 1, 2, 3,...

and

bn =bm

method is described in the present paper
simplified sg_mme.@icalequation:

.
—

(cl)

●

!17hisset of equations is equivalent to the set of equations (B5)
frcm which the critical shear stress is determined if

/

—.—

xm = qj \ (i* + J&)2 - kjispb (C2) - - “

(where m is a Uff erent integer for ea@ clifferent combination
of i and J),

.

—

,

—
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(where n bears the same relation to p, q aEJ m bears b i, j),
and

(C4)

Equations (Cl) can stiilarly be shown to be a generalization of
equations (B8).

The problem is to find the highest value of X which permits
nonvanishing solutions to be found for equation (Cl). In order ti
avoid tie use of too many suffixes, matrix ziotition is used, so mat
equation (Cl) beccznes

where B is a square matrix and ~ is a colum vector.

The matrix iteration metihod (reference 5) consists in takfng
sow arbitrarily assuuefi values for the set of values for ~
and ti calculating the left-hand side of equation (C5) in order to
obtain an imnroved set of values for ~. (DivIEIiorL by A is
unnecessary bec8use the solution of homogeneous equations can be
deter:ntiedonly to within an a?bitmary multiplicative constant.)
These new values are reinserted in the left-hand side of equation (C5)
to obtain further improvement in the values, and the process is
contiued until the ratios of the components of ~ are not
appreciably changed by furhher iterations. The value of k is then
given as the ratio of the last value found for ~ to the precedtig
value.

The basis for this method csn be seen from the followlng
discussion. According to matrix theory, lf the matrix B iS
of Nth order, there are N values of k satisfying equation (C5).
Let these values be called Xl, ~j .... AN witi the order so

arranged that ~hl[ > A2 > WOO >lkNle For each value of Xi there

is a corresponding solution for x, which may be called ~i. Then

(c6)

.
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where the veJues of the coefficients
The result of one iteration, obtained
and (C7), is seen to be

(C7)
I

Ci
are in general not lmown*

by using equations (c6)

,,(2)
5

= #Jo)

The result of n iterations is

.-
\

.

.

The next step is to fac?torout the nth power of Al, that is,
the largest value of k: —

((28)

..=—
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Equation (~8)shows that as n increases ~(n~ becomes more

and more nearly a constant times 2J1, the rate =f convergence

Ai
depending on the smallness of the ratio ~ (i =2, 3, ..*, N).

~ ’11
The largest value of L can then be found as

‘1

Modification for

In plate buckling problems

$d

‘jlm

Shear Buckling

in which shear

problems

is present, the
critical shear stres Ses- ~cur in pairs which are equal in magnitude
but opposite in sign. For such a-problem X2 = -Ll, and equation (c8)
may be written

(C9)

Equation (C9) implies that unless C2 is by chance equal to 0,

no emount of iteration will result in convergence.

A simple expedient can be used, however, to p d ce convergence.
WSince equation (C9) shows that as n increases ~ n oscillates

about the true solution (constant times ~1), an improved approxi–

- (n)mation can be obtained by constructing ~ suah that each

component is sane kind of.mean of the corresponding components of ~
(n)

fr&l)
and & . Immediate convergence results fram the use of the
geometfic mean (but not from the use of the arithmetic mer~) after
one iteration if only two equations of the set for a rectangular plate
in shear are used. In the present paper, therefore, in which
10 equations were used, the gecmetric mean was employed except when
Fourier coeffi~ients of two successive iterations had opposite signs,
in which case the arithmetic mean was used.

The procedure adopted for obtaining the shear buckling stress
was to use the matrix iteration method modified by taking the
gecmetric mean after,every two iterations as described in the pr~
ceding paragmph. In addition, by use of a method suggested in
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refemnc? t!, an improved value. for Xl was
completion of n Iterations by means of tie
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obtained after the

eqkt$on “

,., . . t- ‘i~

Choice of Equations

An exact solution of the critical shear stress for rectangular
plates involves the uae of an $nfinite set of equations” in an ‘-
~imite number of unlmwns. !3inoe attention must be confined to
a f init% nwber of equations - say, ~ - the ability to choose the
best N equations for the purpose is very desirable.

A very useful (S,ItACU@Inot rigorously correct) guide to
the best choice of the equations to be used w be obtained frcm a
consideration of the accuracy caf’representation of the buckle
deformation. The use of N equations in N unlmowns implies that
the deflection surface ts being described in terms of N Fourier
components, with the’other components assumed equal to. 0.

The matrtx iteration method yields tie Four5er coefficients as
wellas the critical stress coefficient. The values found,for these
Fourier coefficients (whez@N was taken tote .10) were suhstj.tuted
jn the followi~” form: . . . .

rG-EF“ ““
? .

all a22

: :=

a33 a44 ~

a3i a42. “’a53 “

h-a71I

“1+
..

odd

%8
1 1

-1

-L%E’-i
a
14 a25 a36

%2 %?3 ’34 %3 ~

a21 “a,32 a43 ’54

., a41 a52 a63
1 1

+4-
a61 %2

%1 —

.

-.

—

—.
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As a result of this substitution, values were fnserted in the
10 squares corresponding to coefficients assumed. not equal to O,
whereas no values we~*esubstituted for the remaining squares.

The absolute values of the coefficients were observed to
decrease in magnitude in a rather uniform memner as the distance
fram the largest coefficient increased. H a space in which no
value was substituted oocurs in one of the foregoing forms in a
region where the neighboring computed coeffioienta are not small,
appreciable error is usuaUy incurred by the neglect of that term.
33 such cases, the ?mdQingstress was recomputed with the coefficient
in that space included and the smallest coeffici~t dropped from
consideration. .

,.

. . . ,.
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STRESS COEFFICIENTS AND DEFL20TIOX-FUNOTIOI? C02FFICIEN7S

Shear end Iongitudlnel iireot rtrass

a.1
E

I Stress
floienta

Daflaotlon-ruaotlon ooefrlolenti all
L a

ka
+ .1 Yen

l+J i+J %1
Even Odd

I

kx %3

o

-.023

-.041
-.057

-.070

-.091
-.1o7

a22 %5 i a24 [ >3 I a42 a51

o

-.001
-.c02

-.W3

-.004
-.006
-.W7

—
a35

o

.001

.003

.cd

.005

.007

4

3
2
1

0

-2
-4 IL

o 7.05 1

4.6s 6.42 1

6.62 9.61 1
6.11 1

9.3511.63 1

1.56 1

3.45UI.76 1

0

.143

.205

.253

.293

.360

.417

0

-.017

-.035

-.052

-.071

-.107
-.145

0
-.001

-.203

-.m4

“.W
-.006
-.tm~

o

,006

.007

.006

.005

.002

-.CXE2

o

.Oog

.019

0

.006

.Co6

.005

.003
-.003
-.011

.02s

.a3~

.057

.076 .Ooel

a=2s
1

a21 %4 a23 G ‘% a25 a34 ’45 a52

1 0 0 0 0 0 0 0 0
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